Abstract

Thermally modified organic materials commonly known as biochar have gained popularity of being used as a soil amendment. Little information, however, is available on the role of biochar in alleviating the negative impacts of saline water on soil productivity and plant growth. This study, therefore, was conducted to investigate the effects of Conocarpus biochar (BC) and organic farm residues (FR) at different application rates of 0.0% (control), 4.0% and 8.0% (weight/weight) on yield and quality of tomatoes grown on a sandy soil under drip irrigation with saline or non-saline water. The availability of P, K, Fe, Mn, Zn and Cu to plants was also investigated. The results demonstrated clearly that addition of BC or FR increased the vegetative growth, yield and quality parameters in all irrigation treatments. It was found that salt stress adversely affected soil productivity, as indicated by the lower vegetative growth and yield components of tomato plants. However, this suppressing effect on the vegetative growth and yield tended to decline with application of FR or BC, especially at the high application rate and in the presence of biochar. Under saline irrigation system, for instance, the total tomato yield increased over the control by 14.0%–43.3% with BC and by 3.9%–35.6% with FR. These could be attributed to enhancement effects of FR or BC on soil properties, as indicated by increases in soil organic matter content and nutrient availability. Therefore, biochar may be effectively used as a soil amendment for enhancing the productivity of salt-affected sandy soils under arid conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call