Abstract
Connexin43 has been recognized as forming gap junctions in Leydig cells. However, previous work has shown that mouse Leydig cells lacking this connexin do not suffer any limitation of their ability to produce testosterone when stimulated with luteinizing hormone. The objective of this study was to identify additional connexins in mouse Leydig cells that could be required for steroidogenesis. A reverse transcription - polymerase chain reaction screen involving isolated adult Leydig cells identified connexin36 and connexin45 as expressed along with connexin43. Treatment of dissociated testes with carbenoxolone, a nonspecific blocker of gap junctional coupling, significantly reduced testosterone output as did treatment with quinine, which disrupts coupling provided by connexin36 and connexin45 gap junctions but not those composed of connexin43, indicating that either or both of connexins 36 and 45 could be involved in supporting Leydig cell steroidogenesis. Immunolabeling of adult mouse testis sections confirmed the localization of connexin36 along with connexin43 in Leydig cell gap junctions but not connexin45, which is distributed throughout the cells. It was concluded that connexin36, connexin43, and connexin45 are coexpressed in Leydig cells with connexins 36 and 43 contributing to gap junctions. The role of connexin45 remains to be elucidated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.