Abstract

Gap junctions (GJ) are known to be involved in spontaneous wound healing in rodent skin. We analyzed the staining patterns of the GJ proteins Cx26, Cx30, and Cx43 in human cutaneous wound healing and compared ex vivo spontaneous wound healing to non-healing wounds (chronic leg ulcers) and to ex vivo accelerated wound healing after transplantation of cultured keratinocytes. We demonstrate a loss of Cx43 staining at the wound margins during initial wound healing and after transplantation of keratinocytes. In contrast, Cx43 remains present at the margins of most non-healing wounds. We show a subsequent induction of Cx26 and Cx30 near the wound margins in spontaneous wound healing and-even earlier-after the transplantation of keratinocytes. The cells at the wound margins remain negative until the commencement of epidermal regeneration. Cx26/30 are present at the wound margins of most non-healing wounds. Cx stainings are absent in the transplanted keratinocytes during early wound healing, but there is a subsequent induction. Our results suggest that the downregulation of Cx43 is an important event in human wound healing. We discuss the assumption that direct cell-cell communication via GJ contribute to the acceleration of wound healing after the transplantation of keratinocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.