Abstract

Synthetic peptides corresponding to the Gap 26 and Gap 27 domains of the first and second extracellular loops of the major vascular connexins (Cx37, Cx40 and Cx43), designated as (43)Gap 26, (40)Gap 27, (37,40)Gap 26 and (37,43)Gap 27 according to Cx homology, were used to investigate the role of gap junctions in the spread of endothelial hyperpolarizations evoked by cyclopiazonic acid (CPA) through the wall of the rabbit iliac artery. Immunostaining and confocal microscopy demonstrated that gap junction plaques constructed from Cx37 and Cx40 were abundant in the endothelium, whereas Cx43 was the dominant Cx visualized in the media. None of the Cx-mimetic peptides affected endothelial hyperpolarizations evoked by CPA directly. When administered individually, (40)Gap 27, (37,40)Gap 26 and (37,43)Gap 27, but not (43)Gap 26, attenuated endothelium-dependent subintimal smooth muscle hyperpolarization. By contrast, only (43)Gap 26 and (37,43)Gap 27 reduced the spread of subintimal hyperpolarization through the media of the rabbit iliac artery. The site of action of the peptides therefore correlated closely with the expression of their target Cxs in detectable gap junction plaques. The findings provide further evidence that the EDHF phenomenon is electrotonic in nature, and highlight the contribution of myoendothelial and homocellular smooth muscle communication via gap junctions to arterial function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call