Abstract

AbstractThe stability of synthetic connellite has been determined at 298.2K (25 °C) and 105 Pa, using solution methods. For the reaction 1/37{62H+(aq) + Cu37Cl8(SO4)2(OH)62.8H2O(s) ⇌ Cu2+(aq) + 8Cl−(aq) + 2SO42−(aq) + 70H2O(l)}, log KH+ is equal to 6.44(2). This result has been used in turn to calculate a value for ΔfG°(1/37Cu37Cl8(SO4)2(OH)62.8H2O, s, 298.2K) of −423.7±6.6 kJ mol−1. During the synthesis of connellite, claringbullite sometimes forms as a metastable phase. This solid recrystallizes to connellite if kept in contact with the reaction solution. The results have been used to construct an equilibrium model for the formation of connellite in relation to other common secondary copper (II) minerals. Connellite crystallizes from solution over an appreciable range of conditions. This result is consistent with the observed widespread occurrence of connellite, though as a very minor phase, in the oxidized zones of cupriferous sulfide ores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.