Abstract

To go beyond the fundamental limits imposed by latency, nonlinearity, and laser damage threshold in silica glass fibers, the hollow-core fiber (HCF) technique has been intensively investigated for decades. Recent breakthroughs in ultralow-loss HCF clearly imply that long-haul applications of HCF in communications and lasers are going to appear. Nevertheless, up to now, the HCF technique as a whole is still hampered by the limited length of a single span and the lack of HCF-based functional devices. To resolve these two issues, it is of importance to develop ultralow-loss and plug-and-play HCF interconnections. In this work, we report on HCF interconnections with the lowest-ever insertion losses (0.10 dB for HCF to standard single-mode fiber (SMF) and 0.13 dB for HCF to itself in the 1.5 µm waveband) and in a pluggable means. Two fiber mode-field adapters, one based on a graded-index multi-mode fiber (GIF) and the other utilizing a thermally expanded core (TEC) SMF, have been tested and compared. An extra insertion loss arising from imperfect refractive index distribution in a commercial GIF is observed. Our HCF interconnections also realize a back-reflection of <-35 dB over a 100 nm bandwidth as well as other critical metrics in favor of practical applications. Our technique is viable for any type of HCF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call