Abstract

BackgroundPsychopathic traits have been suggested to increase the risk of violations of socio-moral norms. Previous studies revealed that abnormal neural signatures are associated with elevated psychopathic traits; however, whether the intrinsic network architecture can predict psychopathic traits at the individual level remains unclear. MethodsThe present study utilized connectome-based predictive modeling (CPM) to investigate whether whole-brain resting-state functional connectivity (RSFC) can predict psychopathic traits in the general population. Resting-state fMRI data were collected from 84 college students with varying psychopathic traits measured by the Levenson Self-Report Psychopathy Scale (LSRP). ResultsFunctional connections that were negatively correlated with psychopathic traits predicted individual differences in total LSRP and secondary psychopathy score but not primary score. Particularly, nodes with the most connections in the predictive connectome anchored in the prefrontal cortex (e.g., anterior prefrontal cortex and orbitofrontal cortex) and limbic system (e.g., anterior cingulate cortex and insula). In addition, the connections between the occipital network (OCCN) and cingulo-opercular network (CON) served as a significant predictive connectome for total LSRP and secondary psychopathy score. ConclusionCPM constituted by whole-brain RSFC significantly predicted psychopathic traits individually in the general population. The brain areas including the prefrontal cortex and limbic system and large-scale networks including the CON and OCCN play special roles in the predictive model—possibly reflecting atypical cognitive control and affective processing for individuals with elevated psychopathic traits. These findings may facilitate detection and potential intervention of individuals with maladaptive psychopathic tendency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.