Abstract

Paranoid personality disorder (PPD), a mental disorder that affects interpersonal relationships and work, is frequently neglected during diagnosis and evaluation at the individual-level. This preliminary study aimed to investigate whether connectome-based predictive modeling (CPM) can predict paranoia scores of young men with PPD using whole-brain resting-state functional connectivity (rs-FC). College students with paranoid tendencies were screened using paranoia scores ≥60 derived from the Minnesota Multiphasic Personality Inventory; 18 participants were ultimately diagnosed with PPD according to the Diagnostic and Statistical Manual of Mental Disorders and subsequently underwent resting-state functional magnetic resonance imaging. Whole-brain rs-FC was constructed, and the ability of this rs-FC to predict paranoia scores was evaluated using CPM. The significance of the models was assessed using permutation tests. The model constructed based on the negative prediction network involving the limbic system-temporal lobe was observed to have significant predictive ability for paranoia scores, whereas the model constructed using the positive and combined prediction network had no significant predictive ability. In conclusion, using CPM, whole-brain rs-FC predicted the paranoia score of patients with PPD. The limbic system-temporal lobe FC pattern is expected to become an important neurological marker for evaluating paranoid ideation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.