Abstract

This brief addresses a distributed adaptive asymptotically synchronous tracking problem based on guaranteed connectivity for networked uncertain nonholonomic mobile robots (NMRs) with actuator failures and unknown control directions. First, a radial basis function (RBF) neural network is used to approximate the unknown nonlinear functions, and a distributed nonlinear error surface is introduced to achieve synchronous tracking between NMRs and maintain the initial connectivity patterns. Then, a conditional inequality that allows multiple piecewise Nussbaum functions to achieve robust control is proposed to solve the problem of unknown actuator failures and unknown control directions. Moreover, the proposed protocol ensures that all signals in the closed-loop system are globally bounded and the tracking errors converge asymptotically to zero. Finally, a simulation example verifies the effectiveness of the proposed adaptive laws.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.