Abstract

In the quest for eco-friendly alternatives within materials science, the development of sustainable and non-toxic piezoelectric composites is of utmost importance. This study undertakes a computational exploration to elucidate the influence of phase connectivity on the engineering performance of lead-free piezocomposites. Employing a combination of analytical and numerical methodologies, we critically evaluated various figures of merit across different microstructural configurations, juxtaposing these findings with traditional lead zirconate titanate (PZT)-based materials. Our analysis considers 0-3 and 1-3 connectivity patterns, incorporating active phases in the form of spherical particles and cylindrical fibers. We also examine the impact of carbon nanotubes (CNTs) in enhancing the polymeric matrix, which introduces the potential for network percolation and further mechanical and electrical property optimization. The study yields pivotal insights into the phase connectivity of lead-free piezocomposites, with direct implications for their application in sensing, actuating, and energy harvesting domains. We ascertain that the electromechanical performance of these composites is contingent upon the connectivity pattern and the proportion of active phase. Notably, the KNNS-BNZH & Polyethylene composite demonstrates exceptional potential in 1-3 configurations, while the BTO & PVDF composite distinguishes itself with superior dielectric and piezoelectric responses across varying volume fractions. The strategic infusion of CNTs into the PDMS matrix emerges as a significant enhancer of electromechanical attributes, albeit with performance improvements that are specific to the type of coefficient and CNT concentration. This investigation underscores the nuanced interplay between composite design and microstructural attributes, reinforcing the critical role these factors play in the advancement of effective and eco-conscious piezoelectric materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call