Abstract

Potentiometric pH titrations and pD dependent 1H NMR spectroscopy have been applied to study the acidification of the exocyclic amino group of adenine (A) model nucleobases (N9 position blocked by alkyl groups) when carrying trans-a2PtII (with a=NH3 or CH3NH2) entities both at N1 and N7 positions. As demonstrated, in trinuclear complexes containing central A–Pt–A units, it depends on the connectivity pattern of the adenine bases (N7/N7 or N1/N1) and their rotamer states (head–head or head–tail), how large the acidifying effect is. Specifically, a series of trinuclear complexes with (A-N7)–Pt-(N7-A) and (A-N1)–Pt–(N1-A) cross-linking patterns and terminal 9-alkylguanine ligands (9MeGH, 9EtGH) have been analyzed in this respect, and it is shown that, for example, the 9MeA ligands in trans-,trans-,trans-[Pt(NH3)2(N7-9MeA-N1)2{Pt(NH3)2(9EtGH-N7)}2](ClO4)6·6H2O (4a) and trans-,trans-,trans-[Pt(NH3)2(N7-9EtA-N1)2{Pt(CH3NH2)2(9-MeGH-N7)}2](ClO4)6·3H2O (4b) are more acidic, by ca. 1.3units (first pKa), than the linkage isomer trans-,trans-,trans-[Pt(CH3NH2)2(N1-9MeA-N7)2{Pt(NH3)2(9MeGH-N7)}2](NO3)6·6.25H2O (1b). Overall, acidifications in these types of complexes amount to 7–9units, bringing the pKa values of such adenine ligands in the best case close to the physiological pH range. Comparison with pKa values of related trinuclear PtII complexes having different co-ligands at the Pt ions, confirms this picture and supports our earlier proposal that the close proximity of the exocyclic amino groups in a head–head arrangement of (A-N7)–Pt–(N7-A), and the stabilization of the resulting N6H–⋯H2N6 unit, is key to this difference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call