Abstract

Tool wear monitoring can be achieved by analyzing the texture of machined surfaces. In this paper, we present the new connectivity oriented fast Hough transform, which easily detects all line segments in binary edge images of textures of machined surfaces. The features extracted from line segments are found to be highly correlated to the level of tool wear. A multilayer perceptron neural network is applied to estimate the flank wear in various machining processes. Our experiments show that this Hough transform based approach is effective in analyzing the quality of machined surfaces and could be used to monitor tool wear. A performance analysis of our Hough transform is also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.