Abstract

We consider dynamic subgraph connectivity problems for planar undirected graphs. In this model there is a fixed underlying planar graph, where each edge and vertex is either off (failed) or (recovered). We wish to answer connectivity queries with respect to the subgraph. The model has two natural variants, one in which there are d edge/vertex failures that precede all connectivity queries, and one in which failures/recoveries and queries are intermixed. We present a d-failure connectivity oracle for planar graphs that processes any d edge/vertex failures in sort(d,n) time so that connectivity queries can be answered in pred(d,n) time. (Here sort and pred are the time for integer sorting and integer predecessor search over a subset of [n] of size d.) Our algorithm has two discrete parts. The first is an algorithm tailored to triconnected planar graphs. It makes use of Barnette's theorem, which states that every triconnected planar graph contains a degree-3 spanning tree. The second part is a generic reduction from general (planar) graphs to triconnected (planar) graphs. Our algorithm is, moreover, provably optimal. An implication of Pǎtrascu and Thorup's lower bound on predecessor search is that no d-failure connectivity oracle (even on trees) can beat pred(d,n) query time. We extend our algorithms to the subgraph connectivity model where edge/vertex failures (but no recoveries) are intermixed with connectivity queries. In triconnected planar graphs each failure and query is handled in O(logn) time (amortized), whereas in general planar graphs both bounds become O(log2n).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.