Abstract

Following Opitz and Friederici (2003) suggesting interactions of the hippocampal system and the prefrontal cortex as the neural mechanism underlying novel grammar learning, the present fMRI study investigated functional connectivity of bilateral BA 44/45 and the hippocampus during an artificial grammar learning (AGL) task. Our results, contrary to the previously reported interactions, demonstrated parallel (but separate) contributions of both regions, each with their own interactions, to the process of novel grammar acquisition. The functional connectivity pattern of Broca's area pointed to the importance of coherent activity of left frontal areas around the core language processing region for successful grammar learning. Furthermore, connectivity patterns of left and right hippocampi (predominantly with occipital areas) were found to be a strong predictor of high performance on the task. Finally, increasing functional connectivity over time of both left and right BA 44/45 with the right posterior cingulate cortex and the right temporo-parietal areas points to the importance of multimodal and attentional processes supporting novel grammar acquisition. Moreover, it highlights the right-hemispheric involvement in initial stages of L2 learning. These latter interactions were found to operate irrespective of the task performance, making them an obligatory mechanism accompanying novel grammar learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.