Abstract

We consider equilibria arising in a model for phase transitions which correspond to stable critical points of the constrained variational problem \(\inf_{\int_{\Omega} u\,dx=m} \int_{\Omega} \frac{1}{\varepsilon}W(u)+\frac{\varepsilon}{2} \big|\nabla u\big|^2 dx.\) Here W is a double‐well potential and \(\Omega\subset\R^n\) is a strictly convex domain. For e small, this is closely related to the problem of partitioning Ω into two subdomains of fixed volume, where the subdomain boundaries correspond to the transitional boundary between phases. Motivated by this geometry problem, we show that in a strictly convex domain, stable critical points of the original variational problem have a connected, thin transition layer separating the two phases. This relates to work in [GM] where special geometries such as cylindrical domains were treated, and is analogous to the results in [CHo] which show that in a convex domain, stable critical points of the corresponding unconstrained problem are constant. The proof of connectivity employs tools from geometric measure theory including the co‐area formula and the isoperimetric inequality on manifolds. The thinness of the transition layer follows from a separate calculation establishing spatial decay of solutions to the pure phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.