Abstract

Neuroimaging studies have shown that the functional connectivity (FC) of corticostriatal circuits in nonmanifesting leucine-rich repeat kinase 2 (LRRK2) G2019S mutation carriers mirrors neural changes in idiopathic Parkinson's disease (PD). In contrast, neural network changes in LRRK2 G2385R and R1628P mutations are unclear. We aimed to investigate the FC of corticostriatal circuits in nonmanifesting LRRK2 G2385R and R1628P mutation carriers (NMCs). Twenty-three NMCs, 28 PD patients, and 29 nonmanifesting noncarriers (NMNCs) were recruited. LRRK2 mutation analysis was performed on all participants. Clinical evaluation included MDS-UPDRS. When compared to NMNCs, NMCs showed significantly reduced FC between the caudate nucleus and superior frontal gyrus and cerebellum, and between the nucleus accumbens and parahippocampal gyrus, amygdala, and insula. We also found increased striatum-cortical FC in NMCs. Although the corticostriatal circuits have characteristic changes similar to PD, the relatively intact function of the sensorimotor striatum-cortical loop may result in less possibility of developing parkinsonian motor symptoms for the NMCs. This study helps explain why LRRK2 G2385R and R1628P mutations are risk factors rather than pathogenic mutations for PD and suggests that various LRRK2 mutations have distinct effects on neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.