Abstract
AbstractIn this paper we consider two natural notions of connectivity for hypergraphs: weak and strong. We prove that the strong vertex connectivity of a connected hypergraph is bounded by its weak edge connectivity, thereby extending a theorem of Whitney from graphs to hypergraphs. We find that, while determining a minimum weak vertex cut can be done in polynomial time and is equivalent to finding a minimum vertex cut in the 2-section of the hypergraph in question, determining a minimum strong vertex cut is NP-hard for general hypergraphs. Moreover, the problem of finding minimum strong vertex cuts remains NP-hard when restricted to hypergraphs with maximum edge size at most 3. We also discuss the relationship between strong vertex connectivity and the minimum transversal problem for hypergraphs, showing that there are classes of hypergraphs for which one of the problems is NP-hard, while the other can be solved in polynomial time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.