Abstract

Introduction: The jaguar (Panthera onca) is an apex carnivore that is vulnerable to habitat fragmentation, and some of its populations are believed to be isolated in Mexico where it is classed as endangered. The main the objective of our study was to evaluate connectivity of available jaguar habitat from the Sierra Madre Oriental of Mexico (SMO) towards southern Mexico. Methods: We determined least-cost pathways for jaguar movements among habitat patches in the SMO and identified potential corridors from the SMO. We used recent jaguar presence data and maximum entropy modeling to identify habitat patches in the SMO. We then used the Analytical Hierarchy Process to generate input values for a resistance (landscape permeability) matrix for jaguar movements that we generated using Multi-Criteria-Evaluation with a weighted linear combination. We then modeled least-cost pathways for both dispersal and local movements of jaguars. Results: We identified 581 potential highly suitable habitat patches for the jaguar. Of these, three were > 100 km2 and thus met the criteria for fundamental (i. e. capable of supporting a viable jaguar population) patches. The resistance matrix contained 3 % of low cost and 49 % intermediate cost areas for jaguar movements. Least-cost pathways analysis showed 61 dispersal routes totaling > 2,000 km and > 200 travel routes, with the largest number of both route types in Hidalgo. We also identified potentially five significant corridors for jaguar movement within the SMO and south towards southern Mexico populations. Discussion and implications: We determined that the SMO contains significant jaguar habitat with multiple biological corridors for connectivity with more southern populations of jaguar in Mexico. Based on this, we recommend development of management strategies to facilitate exchange of individuals from the SMO with other known jaguar populations in southern states (i. e. Oaxaca, Tabasco, Guerrero). Principal strategies may focus on habitat management of fundamental patches and habitat restoration between or around stepping-stones. Promoting connectivity among patches and populations which inhabit the SMO will increase its potential as a biodiversity conservation area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.