Abstract

Abstract There are myriad ways atmospheric circulation responds to increased CO2. In the troposphere, the region of the tropical upwelling narrows, the Hadley cells expand, and the upper-level subtropical zonal winds that comprise the subtropical jet strengthen. In the stratosphere, the tropical upwelling narrows and strengthens, enhancing the Brewer–Dobson circulation. Despite the robustness of these projections, dynamical coupling between the features remains unclear. In this study, we analyze output from the NASA Goddard Institute for Space Studies (GISS) ModelE coupled climate model to examine any connection between the upper tropospheric and lower stratospheric circulation by considering the features’ seasonality, hemispheric asymmetry, scaling, and transient response to a broad range of CO2 forcings. We find that a narrowing and strengthening of upper tropospheric upwelling occurs with a strengthening of the subtropical jet. There is also a narrowing and strengthening of lower stratospheric upwelling that is related to an equatorward shift in critical latitude for wave breaking and the associated strengthening of the subtropical lower stratosphere’s zonal winds. However, the stratospheric responses display different seasonal, hemispheric, and transient patterns than those in the troposphere, indicating independent circulation changes between the two domains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call