Abstract

We describe links between a recently introduced semidefinite relaxation for the max-cut problem and the well known semidefinite relaxation for the stable set problem underlying the Lovász’s theta function. It turns out that the connection between the convex bodies defining the semidefinite relaxations mimics the connection existing between the corresponding polyhedra. We also show how the semidefinite relaxations can be combined with the classical linear relaxations in order to obtain tighter relaxations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.