Abstract

Graded bundles are a particularly nice class of graded manifolds and represent a natural generalization of vector bundles. By exploiting the formalism of supermanifolds to describe Lie algebroids, we define the notion of a weighted[Formula: see text]-connection on a graded bundle. In a natural sense weighted [Formula: see text]-connections are adapted to the basic geometric structure of a graded bundle in the same way as linear [Formula: see text]-connections are adapted to the structure of a vector bundle. This notion generalizes directly to multi-graded bundles and in particular we present the notion of a bi-weighted[Formula: see text]-connection on a double vector bundle. We prove the existence of such adapted connections and use them to define (quasi-)actions of Lie algebroids on graded bundles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.