Abstract

During the last decade silicon nanocrystals (Si-nc) have received widespread interest because of their high quantum efficiency for light emission at room temperature. However, the challenge still ahead is to study and apply these to single Si-ncoptoelectronics, i.e., solving problems linked with connection and manipulation. In this letter we report on connecting (wiring) single Si-nc with conducting multi-walled carbon nanotubes (MWNTs). We have been able to establish a strong mechanical connection by direct growth of MWNTs on Si-nc used as support of iron nanoparticles, by catalytic chemical vapor deposition (CCVD). To monitor the initial stage of the MWNTs growth process, we used a tapered element oscillating microbalance (TEOM). We compared the growth process on Si-nc coated by iron (Fe/Si-nc) to the standard process of growing MWNTs on alumina as support for iron (Fe/Al). The results showed that in the case of Fe/Si-nc catalyst, we obtained three times larger diameter of multi-walled CNTs compared to Fe/Al. This was mainly due to the Si-nc size. The diameter of the CNTs only depended on the size of the Si-nc particles that rested stuck on the tip of the MWNTs. The connected Si-nc kept their photoluminescence properties at room temperature. The present findings open new opportunities in the development of nanodevices for the optoelectronic application field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call