Abstract

Despite the rapidly growing use of second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) microscopy, opportunities for relating polarization-dependent measurements back to local structure and molecular orientation are often confounded by losses in polarization purity. In this work, connections linking Mueller tensor and Jones tensor descriptions of polarization-dependent SHG and TPEF are shown to substantially simplify partially depolarized microscopy measurements. These connections were facilitated by the derivation of several new tensor identity relations, based on generalization of established transformations of matrices and vectors. Methods are described for integrating local-frame symmetry and azimuthal rotation angle for simplifying the Mueller tensor. Through simple expressions bridging the Mueller and Jones formalisms, mathematical models for partial depolarization can greatly simplify interpretation of SHG and TPEF measurements to reconstruct the more general Mueller tensors using the much more concise Jones descriptions for the purely polarized components. Integrating the Mueller architecture allows polarization-dependent SHG and TPEF measurements to be connected back to a relatively small set of free parameters related to local structure and orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.