Abstract

The paper investigates the viability of use of conventional joining concepts between reinforced concrete barrier rails to fiber-reinforced polymer composite bridge decks. The concept is tested and implemented as part of a FRP bridge system incorporating concrete filled carbon/epoxy shells as girders and a pultruded core E-glass/vinylester–polyester deck. The barrier was anchored into the deck using polymer concrete filled cavities within the deck at discrete locations. Experimental results indicated that the configuration provides excellent anchoring capacity and a mode of failure that is more stable and capable of greater energy absorption than the conventional system due to the encapsulation of the anchorage within the composite deck. Failure was initiated through yield in the bars at a load of 129 kN compared to a demand level of 44.5 kN. No damage accrues to the deck itself with minimal damage in the anchorage. Analytical predictions of onset of yield and failure are shown to match experimental results as well. The testing validates the use of the system pursuant to specification mandated criteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.