Abstract

Bulk-edge correspondence is one of the most distinct properties of topological insulators. In particular, the 1D winding number ν has a one-to-one correspondence to the number of edge states in a chain of topological insulators with boundaries. By properly choosing the unit cells, we carry out numerical calculation to show explicitly in the extended SSH model that the winding numbers corresponding to the left and right unit cells may be used to predict the numbers of edge states on the two boundaries in a finite chain. Moreover, by drawing analogy between the SSH model and QWZ model, we show that the extended SSH model may be generalized to the extended QWZ model. By integrating the “magnetic field” over the momentum strip 0≤p2≤π,0≤p12π in the Brillouin zone, we show a identity relating the 2D Chern number and the difference between the 1D winding numbers at p2=0 and p2=π.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.