Abstract

Methamphetamine (METH) is a widely used "club drug" that produces neural damage in the brain, including the loss of some neurons. METH-induced striatal neuronal loss has been attenuated by pretreatment with the neurokinin-1 receptor antagonist WIN-51,708 in mice. Using a histologic method, we have observed the internalization of the neurokinin-1 receptor into endosomes in the striatal somatostatin/NPY/nitric oxide synthase interneurons. To investigate the role of this interneuron in the striatal cell death induced by METH, we assessed by immunohistochemistry the number of striatal nitric oxide synthase-positive neurons in the presence of METH at 8 and 16 hours after systemic injection of a bolus of METH (30 mg/kg, i.p.). We found the number of striatal nitric oxide synthase-positive neurons unchanged at these time points after METH. In a separate experiment we measured the levels of striatal 3-nitrotyrosine (3-NT) by HPLC (high-pressure liquid chromatography) as an indirect index of nitric oxide synthesis. METH increased the levels of 3-nitrotyrosine in the striatum and this increase was significantly attenuated by pretreatment with a selective neurokinin-1 receptor antagonist. These observations suggest a causal relationship between the neurokinin-1 receptor and the activation of neuronal nitric oxide synthase that warrants further investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.