Abstract
In this paper, we establish a connection between the Hadamard product and the usual matrix multiplication. In addition, we study some new properties of the Hadamard product and explore the inverse problem associated with the established connection, which facilitates diverse applications. Furthermore, we propose a matrix-variate generalized Birnbaum–Saunders (GBS) distribution. Three representations of the matrix-variate GBS density are provided, one of them by using the mentioned connection. The main motivation of this article is based on the fact that the representation of the matrix-variate GBS density based on element-by-element specification does not allow matrix transformations. Consequently, some statistical procedures based on this representation, such as multivariate data analysis and statistical shape theory, cannot be performed. For this reason, the primary goal of this work is to obtain a matrix representation of the matrix-variate GBS density that is useful for some statistical applications. When the GBS density is expressed by means of a matrix representation based on the Hadamard product, such a density is defined in terms of the original matrices, as is common for many matrix-variate distributions, allowing matrix transformations to be handled in a natural way and then suitable statistical procedures to be developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.