Abstract

The tectonic framework of the Siberian craton is still under debate. It is generally assumed that the Markha and Daldyn terranes collided at 2.2–2.1 Ga and the final assembly of the Siberian craton occurred at 1.9–1.8 Ga. However, previous study on zircons from xenoliths of the Zapolyarnaya pipe, which is located in the Upper Muna kimberlite field and close to the boundary between the Markha and Daldyn terranes, do not show tectonothermal evidence younger than 2.7 Ga. To clarify the tectonothermal evolution of the Siberian craton, we present U-Pb ages and Hf isotope data of zircons from crustal xenoliths in the Novinka and Komsomolskaya Magnitnaya kimberlite pipes in the Upper Muna field. The zircon ages confirm only one major tectonothermal event at 2.7 Ga in the Upper Muna field, which doubts the existence of the collision zone between the Markha and Daldyn terranes. The middle-lower crust beneath the Upper Muna field is mainly composed of mafic and intermediate granulites and experienced long-term cooling. The negative values of εHf(2.7) suggests ignorable addition of juvenile component during partial melting of the Paleoarchean crust at 2.7 Ga. Compared with crustal xenoliths from other kimberlite pipes in the Yakutian diamondiferous province, the crust of the Anabar province shows vertical and lateral heterogeneity and the absence of a relationship between the crustal reworking degree and the main collision zones. We propose that the widespread 2.7 and 1.9 Ga tectonothermal events in the Anabar tectonic province were associated with the episodic rise of superplumes, which not only caused the crustal growth and reworking but also facilitated collision and amalgamation of terranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call