Abstract
Building on recent simulation work, it is demonstrated using molecular dynamics simulations of two-component fluid mixtures that the chemical contribution to the Soret effect in two-component nonideal fluid mixtures arises due to differences in how the partial pressures of the components respond to temperature and density gradients. Further insight is obtained by reviewing the connection between activity and deviations from Raoult's law in the measurement of the vapor pressure of a liquid mixture. A new parameter γsS, defined in a manner similar to the activity coefficient, is used to characterize differences deviations from "ideal" behavior. It is then shown that the difference γ2S-γ1S is predictive of the signof the Soret coefficient and is correlated to its magnitude. We hence connect the Soret effect to the relative volatility of the components of a fluid mixture, with the more volatile component enriched in the low-density, high-temperature region, and the less volatile component enriched in the high-density, low-temperature region. Because γsS is closely connected to the activity coefficient, this suggests the possibility that measurement of partial vapor pressures might be used to indirectly determine the Soret coefficient. It is proposed that the insight obtained here is quite general and should be applicable to a wide range of materials systems. An attempt is made to understand how these results might apply to other materials systems including interstitials in solids and multicomponent solids with interdiffusion occurring via a vacancy mechanism.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.