Abstract

We consider a generalized coagulation-decoagulation system on a one-dimensional discrete lattice with reflecting boundaries. It is known that a Bernoulli shock measure with two shock fronts might have a simple random-walk dynamics, provided that some constraints on the microscopic reaction rates of this system are fulfilled. Under these constraints the steady state of the system can be written as a linear superposition of such shock measures. We show that the coefficients of this expansion can be calculated using the finite-dimensional representation of the quadratic algebra of the system obtained from a matrix-product approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.