Abstract

AbstractTurbulence parameterizations for convective boundary layer in coarse‐scale atmospheric models usually consider a combination of the eddy‐diffusive transport and a non‐local transport, typically in the form of a mass flux term, such as the widely adopted eddy‐diffusivity mass‐flux (EDMF) approach. These two types of turbulent transport are generally considered to be independent of each other. Using results from large‐eddy simulations, here, we show that a Taylor series expansion of the updraft and downdraft mass‐flux transport can be used to approximate the eddy‐diffusivity transport in the atmospheric surface layer and the lower part of the mixed layer, connecting both eddy‐diffusivity and mass‐flux transport theories in convective conditions, which also quantifies departure from the Monin‐Obukhov similarity (MOS) in the surface layer. This study provides a theoretical support for a unified EDMF parameterization applied to both the surface layer and mixed layer and highlights important correction required for surface models relying on MOS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.