Abstract
Black carbon (BC) is one of the main components of ambient particulate matter. Previous studies have suggested that BC is more toxic than PM2.5 (mass concentration of all sub-2.5 μm particles). One possible reason for the greater toxicity is that BC is typically in a size range which penetrates easily into lung alveoli and BC particles have a large surface area due to their fractal structure. Due to these properties, toxic gaseous compounds can condensate on the surface of BC particles and then be transported effectively into human lungs, causing a large lung-depositing surface area (LDSA) of particles. In this study, we investigated the relationship between BC and LDSA concentrations in street canyon, highway, and harbour environments in the Helsinki Metropolitan area. In all the studied environments, BC and LDSA concentrations were strongly correlated. In the harbour, cases where marine traffic was considered as the main emission source, the average LDSA per BC mass was 2.4–2.7 times higher than in the road traffic environments. This result was linked to a larger lung depositing size of BC, suggesting that condensation and coagulation of other co-emitted compounds can have a major role in the lung deposition of BC. Thus, BC emissions from marine traffic can cause higher exposure of other co-emitted toxic compounds in the human lungs than the road traffic. The fraction of LDSA linked to BC emissions in the street canyon, the highway, and the harbour were 33%, 30%, and 47%, respectively, whereas the fractions of BC mass in PM1 concentration were 14%, 14%, and 7%, respectively. The results show that BC emissions contribute much more to LDSA than to mass concentration, which indicates that the possible strong negative health effects linked to ambient BC mass concentration could be related to the high LDSA concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.