Abstract

The exchange-correlation (XC) local density approximation (LDA) is the original density functional used to investigate the electronic structure of molecules and solids within the formulation of Kohn and Sham. The LDA is fundamental for the development of density-functional approximations. In this work we consider the generalized Kohn-Sham (GKS) theory of hybrid functionals. The GKS formalism is an extension of the Kohn-Sham theory for electronic ground states and leads to a vast set of alternative density functionals, which can be estimated by the LDA and related methods. Herein we study auxiliary electronic systems with parametrized interactions and derive (i) a set of exact equations relating the GKS XC energies in the parameter space and (ii) a formal relation between the parameters and the standard XC derivative discontinuity. In view of the new results and previously reported findings, we discuss why the inclusion of Fock exchange, and its long-range-corrected form (in the ground-state calculations and in linear-response Kohn-Sham equations), dominate over the generalized gradient corrections to enhance the quality of the fundamental gap and to enhance excitation-energy estimations. As an example, we show that the adiabatic CAM-LDA0 (a functional with 1/4 global and 1/2 long-range Hartree-Fock interaction, respectively, a range separation factor of 1/3, and pure LDA exchange and correlation) works for electronic excitations as well as the adiabatic CAM-B3LYP functional.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call