Abstract

Explicit relations between the effective-range expansion and the nuclear vertex constant or asymptotic normalization coefficient (ANC) for the virtual decay $B\to A+a$ are derived for an arbitrary orbital momentum together with the corresponding location condition for the ($A+a$) bound-state energy. They are valid both for the charged case and for the neutral case. Combining these relations with the standard effective-range function up to order six makes it possible to reduce to two the number of free effective-range parameters if an ANC value is known from experiment. Values for the scattering length, effective range, and form parameter are determined in this way for the $^{16}$O+$p$, $\alpha+t$ and $\alpha+^3$He collisions in partial waves where a bound state exists by using available ANCs deduced from experiments. The resulting effective-range expansions for these collisions are valid up to energies larger 5 MeV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.