Abstract
This paper presents a new approach to the problem of call admission control (CAC) of variable bit rate (VBR) traffic in an asynchronous transfer mode (ATM) network. Our approach employs an integrated neural network and fuzzy controller to implement the CAC controller. This scheme capitalizes on the learning ability of a neural network and the robustness of a fuzzy controller. Experiments show that this scheme is able to achieve high throughput and low cell loss while achieving fairness among different classes of VBR traffic. For comparison, we have also implemented four other CAC schemes: (1) peak bandwidth method, (2) equivalent bandwidth method, (3) average bandwidth method and (4) neural network quality of service (QoS) predictor. Results of these experiments are presented in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.