Abstract

Increased brain deposition of amyloid beta protein (Abeta) and cognitive deficits are classical signals of Alzheimer's disease (AD) that have been highly associated with inflammatory alterations. The present work was designed to determine the correlation between tumor necrosis factor-alpha (TNF-alpha)-related signaling pathways and inducible nitric oxide synthase (iNOS) expression in a mouse model of AD, by means of both in vivo and in vitro approaches. The intracerebroventricular injection of Abeta(1-40) in mice resulted in marked deficits of learning and memory, according to assessment in the water maze paradigm. This cognition impairment seems to be related to synapse dysfunction and glial cell activation. The pharmacological blockage of either TNF-alpha or iNOS reduced the cognitive deficit evoked by Abeta(1-40) in mice. Similar results were obtained in TNF-alpha receptor 1 and iNOS knock-out mice. Abeta(1-40) administration induced an increase in TNF-alpha expression and oxidative alterations in prefrontal cortex and hippocampus. Likewise, Abeta(1-40) led to activation of both JNK (c-Jun-NH2-terminal kinase)/c-Jun and nuclear factor-kappaB, resulting in iNOS upregulation in both brain structures. The anti-TNF-alpha antibody reduced all of the molecular and biochemical alterations promoted by Abeta(1-40). These results provide new insights in mouse models of AD, revealing TNF-alpha and iNOS as central mediators of Abeta action. These pathways might be targeted for AD drug development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.