Abstract
In this work we show how a specific set of three depolarizing observables, the Indices of Polarimetric Purity (IPP), P1, P2 and P3, are ideal metrics to study the depolarization characteristic of media. We simulate different depolarizing scenarios, based on different depolarizing origins, and we study the corresponding IPP values. The simulations are based on the incoherent addition of multiple elemental polarizing elements, as ideal polarizers and/or retarders with different specific characteristics (orientation, retardance, transmittance, etc.). Further depolarizing scenarios are also studied by including the effect of ideal depolarizers. We show for the first time how by analyzing depolarizing systems through IPP we unravel two different depolarizing origins: isotropic and anisotropic depolarization, with meaningful physical interpretation. The former, isotropic depolarization is related to pure scattering processes, and mainly connected with P3 observable. The later, anisotropic depolarization is originated by microscopic constituent elements showing polarimetric anisotropy (dichroic and/or birefringent elements with different characteristics) and anisotropic scattering produced by these elements, and mainly described by P1 and P2 observables. Both effects can be simultaneously observed in real samples and give us information of the processes that give rise to depolarization in light-matter interactions. The simulated results are experimentally validated by analyzing the depolarizing behavior, in terms of IPP, of diverse real samples with easy physical interpretation, and direct connection with simulations. The present study could be of interest in multiple scenarios, to further understand the depolarizing response of samples, and it can be of special interest for the study of biological tissues and pathologies, as they present important depolarizing behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.