Abstract

The stereoselective binding of the frequently ingested nutraceutical (±)-catechin, with demonstrated differential biological activity between enantiomers, to human serum albumin (HSA), with the largest complexation and enantioselectivity potential among the plasmatic proteins, is studied by combining simulations to optimize the experimental design, robust in vitro electrokinetic chromatographic data, and molecular docking-chiral recognition estimates. Methodological and mathematical drawbacks in previous reports on (±)-catechin-HSA are detected and eliminated. Recent and novel direct equations extracted from the classical interaction model allows advantageous univariate mathematical data treatment, providing the first evidence of quantitative (±)-catechin-HSA enantioselectivity. Also, the binding site in HSA of the enantiomers is approached, and both the experimental enantioselectivity and the main binding site information are contrasted with a molecular docking approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.