Abstract

Stabilizing mechanisms in plant-microbe symbioses are critical to maintaining beneficial functions, with two main classes: host sanctions and partner choice. Sanctions are currently presumed to be more effective and widespread, based on the idea that microbes rapidly evolve cheating while retaining signals matching cooperative strains. However, hosts that effectively discriminate among a pool of compatible symbionts would gain a significant fitness advantage. Using the well-characterized legume-rhizobium symbiosis as a model, we evaluate the evidence for partner choice in the context of the growing field of genomics. Empirical studies that rely upon bacteria varying only in nitrogen-fixation ability ignore host-symbiont signaling and frequently conclude that partner choice is not a robust stabilizing mechanism. Here, we argue that partner choice is an overlooked mechanism of mutualism stability and emphasize that plants need not use the microbial services provided a priori to discriminate among suitable partners. Additionally, we present a model that shows that partner choice signaling increases symbiont and host fitness in the absence of sanctions. Finally, we call for a renewed focus on elucidating the signaling mechanisms that are critical to partner choice while further aiming to understand their evolutionary dynamics in nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.