Abstract

Let N be a compact simply connected smooth Riemannian manifold and, for p ∈ {2,3,...}, W 1,p (R p+1, N) be the Sobolev space of measurable maps from R p+1 into N whose gradients are in L p . The restriction of u to almost every p-dimensional sphere S in R p+1 is in W 1,p (S, N) and defines an homotopy class in π p (N) (White 1988). Evaluating a fixed element z of Hom(π p (N), R) on this homotopy class thus gives a real number Φ z,u (S). The main result of the paper is that any W 1,p -weakly convergent limit u of a sequence of smooth maps in C ∞(R p+1, N), Φ z,u has a rectifiable Poincare dual $ {\left( {\Gamma ,{\overrightarrow{\Gamma }} ,\theta } \right)} $ . Here Γ is a a countable union of C 1 curves in R p+1 with Hausdorff $ {\user1{\mathcal{H}}}^{1} $ -measurable orientation $ {\overrightarrow{\Gamma }} :\Gamma \to S^{p} $ and density function θ: Γ→R. The intersection number between $ {\left( {\Gamma ,{\overrightarrow{\Gamma }} ,\theta } \right)} $ and S evaluates Φ z,u (S), for almost every p-sphere S. Moreover, we exhibit a non-negative integer n z , depending only on homotopy operation z, such that $ {\int_\Gamma {{\left| \theta \right|}^{{p \mathord{\left/ {\vphantom {p {{\left( {p + n_{z} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {p + n_{z} } \right)}}}} d{\user1{\mathcal{H}}}^{1} < \infty } } $ even though the mass $ {\int_\Gamma {{\left| \theta \right|}d{\user1{\mathcal{H}}}^{1} } } $ may be infinite. We also provide cases of N, p and z for which this rational power p/(p + n z ) is optimal. The construction of this Poincare dual is based on 1-dimensional “bubbling” described by the notion of “scans” which was introduced in Hardt and Riviere (2003). We also describe how to generalize these results to R m for any m ⩾ p + 1, in which case the bubbling is described by an (m–p)-rectifiable set with orientation and density function determined by restrictions of the mappings to almost every oriented Euclidean p-sphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.