Abstract

The nature of the pseudogap regime of cuprate superconductors at low hole density remains unresolved. It has a number of seemingly distinct experimental signatures: a suppression of the paramagnetic spin susceptibility at high temperatures, low-energy electronic excitations that extend over arcs in the Brillouin zone, X-ray detection of charge-density wave order at intermediate temperatures and quantum oscillations at high magnetic fields and low temperatures. Here we show that a model of competing charge-density wave and superconducting orders provides a unified description of the intermediate and low-temperature regimes. We treat quantum oscillations at high field beyond semiclassical approximations, and find clear and robust signatures of an electron pocket compatible with existing observations; we also predict oscillations due to additional hole pockets. In the zero-field and intermediate temperature regime, we compute the electronic spectrum in the presence of thermally fluctuating charge-density and superconducting orders. Our results are compatible with experimental trends.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call