Abstract

Parameterized quantum circuits (PQCs) are a central component of many variational quantum algorithms, yet there is a lack of understanding of how their parameterization impacts algorithm performance. We initiate this discussion by using principal bundles to geometrically characterize two-qubit PQCs. On the base manifold, we use the Mannoury-Fubini-Study metric to find a simple equation relating the Ricci scalar (geometry) and concurrence (entanglement). By calculating the Ricci scalar during a variational quantum eigensolver (VQE) optimization process, this offers us a new perspective to how and why Quantum Natural Gradient outperforms the standard gradient descent. We argue that the key to the Quantum Natural Gradient's superior performance is its ability to find regions of high negative curvature early in the optimization process. These regions of high negative curvature appear to be important in accelerating the optimization process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.