Abstract

Chlorophyll (Chl) is indispensable for photosynthesis. In association with Chl-binding proteins (CBPs), it is responsible for light absorption, excitation energy transfer, and charge separation within the photosynthetic complexes. By contrast, photoexcitation of free Chl and its metabolic intermediates generates hazardous reactive oxygen species (ROS). While antagonistic activities of Chl synthesis and catabolism have been mostly elucidated, the tight synchronization of these metabolic activities with the formation and dismantling of the photosynthetic complexes is poorly understood. Recently, a set of auxiliary factors were identified to adjust metabolic activities and provide accurate amounts of Chl for pigment-protein complexes. Here, we review current knowledge of post-translational coordination of Chl formation, breakdown, and turnover with the assembly and disassembly of various CBPs and highlight future research perspectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.