Abstract

Modern ultrafast spectroscopic techniques provide new opportunities to study chemical reaction dynamics in liquids and hold the possibility of obtaining much of the same detailed information available in gases. Vibrational energy transfer studies are the most advanced of the investigations and demonstrate that it is possible to observe state-specific pathways of energy flow within a vibrationally excited molecule (intramolecular vibrational relaxation) and into the surrounding solvent molecules (intermolecular energy transfer). Energy transfer in liquids and gases share many common aspects, but the presence of the solvent also alters the relaxation in both obvious and subtle ways. Photodissociation is amenable to similarly detailed study in liquids, and there are informative new measurements. Bimolecular reactions have received the least attention in state-resolved measurements in liquids, but the means to carry them much further now exist. Studying photodissociation and bimolecular reaction of molecules prepared with initial vibrational excitation in liquids is a realistic, but challenging, goal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.