Abstract

AbstractThis article reviews the exchange of carbon dioxide (CO2) and methane (CH4) gases between wetland and atmosphere, with a primary emphasis on ecosystem‐scale fluxes and their environmental controls. It is intended to complement a previous review of wetland energy and water exchanges (Lafleur 2008). It is shown that wetland exchanges of these gases are greatly variable in space and time, especially CH4. Most wetlands appear to be sinks for atmospheric CO2, while almost all are emitters of CH4. The strongest environmental control on the CO2 flux is drought, which often determines whether a wetland will be a net sink or source for atmospheric CO2. Due to complex biochemistry and transport mechanisms, methane efflux from wetlands often ranges over several orders of magnitude within a single wetland and among wetlands, making it difficult to quantify the environmental controls on this flux. The magnitude of gas fluxes is not strongly related to wetland type, which implies that modelling of these fluxes should consider wetlands a continuum and attempt to address processes as they vary along this continuum instead of as discrete entities. Although more research is required into the magnitude, variation and controls on trace gas fluxes in all wetland types, some wetlands (tropical and temperate marshes) are particularly understudied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call