Abstract
Abstract We show that limit linear series spaces for chains of curves are reduced. Using recent advances in the foundations of limit linear series, we then use degenerations to study the question of connectedness for spaces of linear series with imposed ramification at up to two points. We find that in general, these spaces may not be connected even when they have positive dimension, but we prove a criterion for connectedness which generalizes the theorem previously proved by Fulton and Lazarsfeld in the case without imposed ramification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.