Abstract
Let X be an arbitrary category with an (E,M)-factorization structure for sinks. A notion of constant morphism that depends on a chosen class of monomorphisms is introduced. This notion yields a Galois connection that can be seen as a generalization of the classical connectedness-disconnectedness correspondence (also called torsion-torsion free in algebraic contexts). It is shown that this Galois connection factors through the collection of all closure operators on X with respect to M).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.