Abstract
The zero forcing number $Z(G)$ of a graph $G$ is the minimum cardinality of a set $S$ with colored (black) vertices which forces the set $V(G)$ to be colored (black) after some times. ``color change rule'': a white vertex is changed to a black vertex when it is the only white neighbor of a black vertex. In this case, we say that the black vertex forces the white vertex. We investigate here the concept of connected zero forcing set and connected zero forcing number. We discusses this subject for special graphs and some products of graphs. Also we introduce the connected propagation time. Graphs with extreme minimum connected propagation times and maximum propagation times $|G|-1$ and $|G|-2$ are characterized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.