Abstract
The topological method for the reconstruction of dynamics from time series [K. Mischaikow et al., Phys. Rev. Lett., 82 (1999), pp. 1144-1147] is reshaped to improve its range of applicability, particularly in the presence of sparse data and strong expansion. The improvement is based on a multivalued map representation of the data. However, unlike the previous approach, it is not required that the representation has a continuous selector. Instead of a selector, a recently developed new version of Conley index theory for multivalued maps [B. Batko, SIAM J. Appl. Dyn. Syst., 16 (2017), pp. 1587-1617; B. Batko and M. Mrozek, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 1143-1162] is used in computations. The existence of a continuous, single valued generator of the relevant dynamics is guaranteed in the vicinity of the graph of the multivalued map constructed from data. Some numerical examples based on time series derived from the iteration of Hénon-type maps are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.