Abstract

Prophages play important roles in the transduction of various functional traits, including virulence factors, but remain debatable in harboring and transmitting antimicrobial resistance genes (ARGs). Herein we characterize a prevalent family of prophages in Streptococcus, designated SMphages, which harbor twenty-five ARGs that collectively confer resistance to ten antimicrobial classes, including vanG-type vancomycin resistance locus and oxazolidinone resistance gene optrA. SMphages integrate into four chromosome attachment sites by utilizing three types of integration modules and undergo excision in response to phage induction. Moreover, we characterize four subtypes of Alp-related surface proteins within SMphages, the lethal effects of which are extensively validated in cell and animal models. SMphages transfer via high-frequency conjugation that is facilitated by integrative and conjugative elements from either donors or recipients. Our findings explain the widespread of SMphages and the rapid dissemination of ARGs observed in members of the Streptococcus genus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.